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This article presents a project that analyzes the pattern of causal errors in 
distributed systems. It asks the question: how wrong could the system be if causal 
order is not enforced? Simulations of a stock-trading system show that the number 
of failed trades due to causal errors has minimal impact on the system. 

Building software has always been recognized as a difficult 

problem, and it's especially difficult in distributed systems. Message 
delays, different processor speeds, service access clashes, and many 
other issues add to the complexity of the software development 
process. 

In a message-passing distributed system, application developers 
must worry about message ordering. Some researchers have argued 
that this should be the application developer's concern1, 2, while 
others argue that it should be left to the underlying communication 
system3. This debate is based on the premise that message order 
errors are bad and must be handled at either the communication or 
the application level. 

We choose a third approach, posing the question: how bad are 
message order errors? In particular, we investigate causal ordering's 
effect on the correctness of distributed applications. We're interested 
in such questions as

l     How wrong would the system be if no restrictions on causal 
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ordering existed? 
l     What is the relationship between network delays and causal 

order violations? 
l     Is there a relationship between a system's business logic and 

the percentage of causal order errors that cause problems? 

We begin to answer these questions by providing motivation for this 
work and explaining the context in which we pursue it. 

Motivation 

For many years, developers have considered distributed systems as 
the "next big thing." The Internet, CORBA, Web services, and other 
related technologies have brought these systems popular 
acceptance. Much discussion as to the best way to approach 
distributed applications remains, and work to simplify building such 
applications is ongoing. 

When building an application over middleware, developers can use 
remote method invocation semantics, which guarantee total order, 
or message-oriented semantics, which make no ordering guarantees. 
Because RMI semantics attempt to replicate traditional method 
invocation semantics, they reduce the parallel nature of distributed 
systems: Distributed pieces of the system must block until the 
remote method invocation returns. Message-oriented semantics 
maximize parallelism by continuing to process as they send out 
messages. At issue here is that messages can trigger other 
messages, possibly leading to a chain of causality that gets muddled 
without blocking. 

Consider Figure 1. In Figure 1a, process C reacts to process A's 
second message before reacting to its first message. With RMI 
semantics, as in Figure 1b, this cannot happen because A won't send 
its second message until it receives the appropriate response to its 
first message. Similarly, with causal order guarantees, C will not see 
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A's second message until it has seen A's first message because the 
second causally depends on the first.

 
Figure 1. Message ordering semantics: (a) nonblocking 
semantics and (b) remote method invocation semantics. 

Background 

Two main schools of thought attempt to cope with message 
ordering: 

l     Leave all message-ordering decisions up to the application, the 
end-to-end argument1,2 

l     Make the communication subsystem enforce message ordering 
at an application-specified level3-6, ranging from no ordering to 
total ordering 
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The end-to-end arguments raised by Jerome H. Saltzer, David P. 
Reed, and David D. Clark2 suggest that functions should be 
implemented at the layer closest to where they are used. Lower 
layers shouldn't provide message ordering because they don't have 
enough information for the implementation, and because the 
applications that do not need the functionality might still have to pay 
for it. Although nontraditional network technologies such as active 
networks7 and firewalls8 challenge end-to-end arguments, it's a 
highly regarded communication protocol design principle. 

On one hand, causal ordering is an application-level issue, so it 
seems natural to put it at the application layer. Doing so prevents 
efficiency loss in applications that don't need causal ordering. 
However, it is very difficult for application developers to be 
responsible for guaranteeing causal ordering in a distributed system 
for several reasons:

l     Causal order is closely related to the business logic and is 
subtle and detailed; thus, identifying causal relationships 
requires adding large amounts of repetitive work to application 
development. 

l     Because the business logic can change from time to time, 
causal order will always be an open issue in the system. 

l     It is almost impossible to exhaust all possible causal error 
violation cases in large-scale application development involving 
large groups of processes. 

l     A goal of distributed system design is isolating application 
developers from lower-level complexity. Because causal 
ordering issues are related to asynchronous programming 
styles, having application developers handle the causal ordering 
can result in errors. The effort spent debugging might outweigh 
the benefit of not having the communication level handle the 
ordering. In addition, few adequate tools for dealing with the 
complex causality structure in distributed systems exist. 
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On the other hand, providing causal ordering at the communication 
layer violates end-to-end arguments. Business logic is the root cause 
of causal-ordered events. However, the communication layer can 
only see the sequences of the events, not the events themselves. As 
a result, causal relationships captured at the communication layer 
are only potential causal dependencies. Two events generated by the 
same source might or might not be causally related given the 
business logic, but the communication system will always consider 
them causally related. Hence, the system loses efficiency by being 
overly cautious. 

Another major problem with providing causal ordering at the 
communication layer is the hidden channel issue. A hidden channel 
exists when processes share information in a non-message-passing 
manner, such as through a shared database. In this case, the 
communication layer will not see the causal relationship occurring 
independent of message ordering. Additionally, the cost of enforcing 
causality either through vector time stamps or other header 
information might be nonnegligible. Despite these drawbacks, 
communication-layer solutions appeal to many researchers5,6,9. 

Our approach tries to find the middle ground, whereby neither the 
application nor the group communication system provides message 
ordering. As long as ordering problems are not critical to the 
application and do not occur frequently, the ultimate goal is a 
system that notices when things go wrong because messages are 
out of order and tries to cope. 

Implementation 

To investigate the affect of causal ordering on distributed application 
correctness, we implemented a distributed application, removed the 
system's causal-ordering restrictions, and logged the results. We 
used vector time stamps10 to monitor messages' causal 
relationships. 
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Security trading system
Our distributed application, MarketSim, simulates a distributed 
security trading system that lets different marketplaces trade with 
each other. Clients post their offers through brokers, and orders are 
broadcast to the marketplaces. After the marketplaces find a buy 
and sell match, the marketplace broadcasts the matching orders to 
update the databases at each marketplace. 

Brokers communicate with each other directly to settle the match. 
Many business scenarios exist. However, all the possible scenarios 
are subsets of the business case shown in Figure 2, involving two 
brokers from different marketplaces. We added a third marketplace 
to illustrate the broadcasting process.
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Figure 2. MarketSim basic business scenario.

We used asynchronous method calls to maximize the trading 
system's throughput. Message-passing orders aren't restricted, 
however, so we expect causal errors. MarketSim has an extensive 
method-call-logging system to trace messages between processes. If 
a causal error occurs, the log reflects it but the program doesn't stop 
running. 

System architecture 

MarketSim implements the entities shown in Figure 2 as independent 
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services on simple object access protocol (SOAP) servers. The 
entities communicate with each other by invoking SOAP method 
calls. Because of SOAP's distributed nature, a programmer can't 
observe any differences between calling a remote SOAP service and 
calling a local SOAP service. To achieve maximum throughput, we 
use concurrent multithreading to avoid waiting for SOAP calls to 
return. In the point-to-point stage (stage 2 of Figure 2), we use such 
asynchronous method calls extensively whenever the business logic 
allows. 

We adopted the Java message service (JMS) mechanism to 
implement multicasting among marketplaces. Marketplaces use the 
MarketBuyOrder topic to broadcast buy orders, and the 
RemoteMatchBuy topic to broadcast order update information. 
Marketplaces both publish and subscribe to these two topics. When a 
new buy order arrives, the home market adds a record to its local 
database and sends the buy order message to MarketBuyOrder. 
Other marketplaces listen to the topic and add a record to their local 
databases when they receive a message. The system can't achieve 
atomic multicast because message delivery is only best effort. 
Similarly, marketplaces use RemoteMatchBuy to propagate matched 
orders and delete orders from local databases on receipt of a 
message. 

The design has obvious flaws. Multithreaded concurrent calls will 
cause race conditions. Causal order violations will occur when race 
conditions conflict with business logic. Populating the database via 
JMS is obviously not secure, and messages could be dropped or 
received late. However, these potential disasters are exactly what we 
are interested in. Our goal is to observe and analyze how "wrong" 
our simulation can be. 

Potential causal errors
Not all the messages in Figure 2 must be completed in the order 
shown. We identified causally ordered events by analyzing the 
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business logic. The program already naturally forces the orders of 
some events. For example, a Sell Order must be received before a 
Remote Match can occur, but the MarketPlace code enforces that. 
Because there are no restrictions on MarketSim's order, the order of 
some events is open. In particular, the following four causal 
orderings can cause a trade to fail:

l     A marketplace must receive a Propagate update before it can 
send Buy notification, Sell notification, or Trade notification 
messages. 

l     A Buy notification must be completed before Buy settlement 
details starts; 

l     An Sell notification must be completed before Sell settlement 
details starts. 

l     A Trade notification must be received before a Transfer shares 
is received. 

Vector time-stamp-logging system
Because MarketSim has few processes, classic Lamport vector time 
stamps do not add a lot of overhead to sent messages. MarketSim 
time stamps all method calls occurring between processes and all 
broadcast messages. MarketSim has no hidden channel. It generates 
a separate log file for each entity and a merged log file at each run. 
Analyzing the log file can give us an accurate picture of the system's 
global state at any give time. The global state reasoned from the log 
files matches the database state, further proving MarketSim's 
correctness. 

Simulation
MarketSim is implemented as a simulation running on a single 1.8-
GHz machine with 512 Mbytes of RAM. We used Tomcat Web Server 
4.1.6, and JMS 1.3 running over SOAP server 2.3.1. For the first set 
of trials we ran the same setup 56 times. Each trial involved 20 
clients, six brokers, three marketplaces, two banks, and two 
registries. To simulate real network conditions, we introduced a 
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random delay of 10 to 20 milliseconds for each message sent. 

Discussion 

Figure 3 is a graph of the failed trades as a percentage of 
successfully completed trades.

 
Figure 3. Percentage of failed trades per trial number.

As Figure 3 shows, there is some variation in the failure rate of 
trades in each trial. This is to be expected with random network 
delays. The variation, however, is not great and the percentage of 
failed trades averages to 2.97 percent over all runs with a standard 
deviation of 1.08 percent. 
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Is this a low number? The answer depends on the application. For 
some applications, any failure rate is unacceptable. But many 
applications, including MarketSim, can recover from a failed trade: if 
a trade fails to complete, it can be resubmitted. 

Future work

The question now becomes one of tradeoffs. What is the overhead of 
introducing causal order into a system, particularly for the 97percent 
of successful transactions? We must contrast this with the cost of 
resubmitting the 3 percent of failed transactions. This is future work. 

Also, we wish to perform more extended runs of the system, 
manipulating the delays in the simulation. We believe widely 
disparate network delays and processor speeds will lead to a much 
greater percentage of failed trades. 

We would also like to extend MarketSim's functionality, making it a 
more realistic simulation, and introduce more complicated business 
logic. This will lead to greater understanding of the causal order 
errors that cause trades to fail and those that are irrelevant to the 
correct functioning of the system. We are also interested in 
extending this work to other business logic and collecting similar 
information. 

Finally, after gathering this data, we expect to be able to define a 
classification system for possible ordering issues in distributed 
applications, with the goal of aiding the application developer in 
building distributed systems. Such a classification would show when 
the developer must be aware of causal ordering issues and when 
these issues can be ignored. 
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