
www.manaraa.com

Causal Errors in Distributed Systems
Nikki Lesley, Holly Hou, and Joydeep Mitra • University of Sydney, Australia

This article presents a project that analyzes the pattern of causal errors in
distributed systems. It asks the question: how wrong could the system be if causal
order is not enforced? Simulations of a stock-trading system show that the number
of failed trades due to causal errors has minimal impact on the system.

Building software has always been recognized as a difficult

problem, and it's especially difficult in distributed systems. Message
delays, different processor speeds, service access clashes, and many
other issues add to the complexity of the software development
process.

In a message-passing distributed system, application developers
must worry about message ordering. Some researchers have argued
that this should be the application developer's concern1, 2, while
others argue that it should be left to the underlying communication
system3. This debate is based on the premise that message order
errors are bad and must be handled at either the communication or
the application level.

We choose a third approach, posing the question: how bad are
message order errors? In particular, we investigate causal ordering's
effect on the correctness of distributed applications. We're interested
in such questions as

l How wrong would the system be if no restrictions on causal

IEEE Distributed Systems Online Published by the IEEE Computer Society 1541-4922/03/$17.00 @ 2003 IEEE

www.manaraa.com

ordering existed?
l What is the relationship between network delays and causal

order violations?
l Is there a relationship between a system's business logic and

the percentage of causal order errors that cause problems?

We begin to answer these questions by providing motivation for this
work and explaining the context in which we pursue it.

Motivation

For many years, developers have considered distributed systems as
the "next big thing." The Internet, CORBA, Web services, and other
related technologies have brought these systems popular
acceptance. Much discussion as to the best way to approach
distributed applications remains, and work to simplify building such
applications is ongoing.

When building an application over middleware, developers can use
remote method invocation semantics, which guarantee total order,
or message-oriented semantics, which make no ordering guarantees.
Because RMI semantics attempt to replicate traditional method
invocation semantics, they reduce the parallel nature of distributed
systems: Distributed pieces of the system must block until the
remote method invocation returns. Message-oriented semantics
maximize parallelism by continuing to process as they send out
messages. At issue here is that messages can trigger other
messages, possibly leading to a chain of causality that gets muddled
without blocking.

Consider Figure 1. In Figure 1a, process C reacts to process A's
second message before reacting to its first message. With RMI
semantics, as in Figure 1b, this cannot happen because A won't send
its second message until it receives the appropriate response to its
first message. Similarly, with causal order guarantees, C will not see

2

www.manaraa.com

A's second message until it has seen A's first message because the
second causally depends on the first.

Figure 1. Message ordering semantics: (a) nonblocking
semantics and (b) remote method invocation semantics.

Background

Two main schools of thought attempt to cope with message
ordering:

l Leave all message-ordering decisions up to the application, the
end-to-end argument1,2

l Make the communication subsystem enforce message ordering
at an application-specified level3-6, ranging from no ordering to
total ordering

3

www.manaraa.com

The end-to-end arguments raised by Jerome H. Saltzer, David P.
Reed, and David D. Clark2 suggest that functions should be
implemented at the layer closest to where they are used. Lower
layers shouldn't provide message ordering because they don't have
enough information for the implementation, and because the
applications that do not need the functionality might still have to pay
for it. Although nontraditional network technologies such as active
networks7 and firewalls8 challenge end-to-end arguments, it's a
highly regarded communication protocol design principle.

On one hand, causal ordering is an application-level issue, so it
seems natural to put it at the application layer. Doing so prevents
efficiency loss in applications that don't need causal ordering.
However, it is very difficult for application developers to be
responsible for guaranteeing causal ordering in a distributed system
for several reasons:

l Causal order is closely related to the business logic and is
subtle and detailed; thus, identifying causal relationships
requires adding large amounts of repetitive work to application
development.

l Because the business logic can change from time to time,
causal order will always be an open issue in the system.

l It is almost impossible to exhaust all possible causal error
violation cases in large-scale application development involving
large groups of processes.

l A goal of distributed system design is isolating application
developers from lower-level complexity. Because causal
ordering issues are related to asynchronous programming
styles, having application developers handle the causal ordering
can result in errors. The effort spent debugging might outweigh
the benefit of not having the communication level handle the
ordering. In addition, few adequate tools for dealing with the
complex causality structure in distributed systems exist.

4

www.manaraa.com

On the other hand, providing causal ordering at the communication
layer violates end-to-end arguments. Business logic is the root cause
of causal-ordered events. However, the communication layer can
only see the sequences of the events, not the events themselves. As
a result, causal relationships captured at the communication layer
are only potential causal dependencies. Two events generated by the
same source might or might not be causally related given the
business logic, but the communication system will always consider
them causally related. Hence, the system loses efficiency by being
overly cautious.

Another major problem with providing causal ordering at the
communication layer is the hidden channel issue. A hidden channel
exists when processes share information in a non-message-passing
manner, such as through a shared database. In this case, the
communication layer will not see the causal relationship occurring
independent of message ordering. Additionally, the cost of enforcing
causality either through vector time stamps or other header
information might be nonnegligible. Despite these drawbacks,
communication-layer solutions appeal to many researchers5,6,9.

Our approach tries to find the middle ground, whereby neither the
application nor the group communication system provides message
ordering. As long as ordering problems are not critical to the
application and do not occur frequently, the ultimate goal is a
system that notices when things go wrong because messages are
out of order and tries to cope.

Implementation

To investigate the affect of causal ordering on distributed application
correctness, we implemented a distributed application, removed the
system's causal-ordering restrictions, and logged the results. We
used vector time stamps10 to monitor messages' causal
relationships.

5

www.manaraa.com

Security trading system
Our distributed application, MarketSim, simulates a distributed
security trading system that lets different marketplaces trade with
each other. Clients post their offers through brokers, and orders are
broadcast to the marketplaces. After the marketplaces find a buy
and sell match, the marketplace broadcasts the matching orders to
update the databases at each marketplace.

Brokers communicate with each other directly to settle the match.
Many business scenarios exist. However, all the possible scenarios
are subsets of the business case shown in Figure 2, involving two
brokers from different marketplaces. We added a third marketplace
to illustrate the broadcasting process.

6

www.manaraa.com

Figure 2. MarketSim basic business scenario.

We used asynchronous method calls to maximize the trading
system's throughput. Message-passing orders aren't restricted,
however, so we expect causal errors. MarketSim has an extensive
method-call-logging system to trace messages between processes. If
a causal error occurs, the log reflects it but the program doesn't stop
running.

System architecture

MarketSim implements the entities shown in Figure 2 as independent

7

www.manaraa.com

services on simple object access protocol (SOAP) servers. The
entities communicate with each other by invoking SOAP method
calls. Because of SOAP's distributed nature, a programmer can't
observe any differences between calling a remote SOAP service and
calling a local SOAP service. To achieve maximum throughput, we
use concurrent multithreading to avoid waiting for SOAP calls to
return. In the point-to-point stage (stage 2 of Figure 2), we use such
asynchronous method calls extensively whenever the business logic
allows.

We adopted the Java message service (JMS) mechanism to
implement multicasting among marketplaces. Marketplaces use the
MarketBuyOrder topic to broadcast buy orders, and the
RemoteMatchBuy topic to broadcast order update information.
Marketplaces both publish and subscribe to these two topics. When a
new buy order arrives, the home market adds a record to its local
database and sends the buy order message to MarketBuyOrder.
Other marketplaces listen to the topic and add a record to their local
databases when they receive a message. The system can't achieve
atomic multicast because message delivery is only best effort.
Similarly, marketplaces use RemoteMatchBuy to propagate matched
orders and delete orders from local databases on receipt of a
message.

The design has obvious flaws. Multithreaded concurrent calls will
cause race conditions. Causal order violations will occur when race
conditions conflict with business logic. Populating the database via
JMS is obviously not secure, and messages could be dropped or
received late. However, these potential disasters are exactly what we
are interested in. Our goal is to observe and analyze how "wrong"
our simulation can be.

Potential causal errors
Not all the messages in Figure 2 must be completed in the order
shown. We identified causally ordered events by analyzing the

8

www.manaraa.com

business logic. The program already naturally forces the orders of
some events. For example, a Sell Order must be received before a
Remote Match can occur, but the MarketPlace code enforces that.
Because there are no restrictions on MarketSim's order, the order of
some events is open. In particular, the following four causal
orderings can cause a trade to fail:

l A marketplace must receive a Propagate update before it can
send Buy notification, Sell notification, or Trade notification
messages.

l A Buy notification must be completed before Buy settlement
details starts;

l An Sell notification must be completed before Sell settlement
details starts.

l A Trade notification must be received before a Transfer shares
is received.

Vector time-stamp-logging system
Because MarketSim has few processes, classic Lamport vector time
stamps do not add a lot of overhead to sent messages. MarketSim
time stamps all method calls occurring between processes and all
broadcast messages. MarketSim has no hidden channel. It generates
a separate log file for each entity and a merged log file at each run.
Analyzing the log file can give us an accurate picture of the system's
global state at any give time. The global state reasoned from the log
files matches the database state, further proving MarketSim's
correctness.

Simulation
MarketSim is implemented as a simulation running on a single 1.8-
GHz machine with 512 Mbytes of RAM. We used Tomcat Web Server
4.1.6, and JMS 1.3 running over SOAP server 2.3.1. For the first set
of trials we ran the same setup 56 times. Each trial involved 20
clients, six brokers, three marketplaces, two banks, and two
registries. To simulate real network conditions, we introduced a

9

www.manaraa.com

random delay of 10 to 20 milliseconds for each message sent.

Discussion

Figure 3 is a graph of the failed trades as a percentage of
successfully completed trades.

Figure 3. Percentage of failed trades per trial number.

As Figure 3 shows, there is some variation in the failure rate of
trades in each trial. This is to be expected with random network
delays. The variation, however, is not great and the percentage of
failed trades averages to 2.97 percent over all runs with a standard
deviation of 1.08 percent.

10

www.manaraa.com

Is this a low number? The answer depends on the application. For
some applications, any failure rate is unacceptable. But many
applications, including MarketSim, can recover from a failed trade: if
a trade fails to complete, it can be resubmitted.

Future work

The question now becomes one of tradeoffs. What is the overhead of
introducing causal order into a system, particularly for the 97percent
of successful transactions? We must contrast this with the cost of
resubmitting the 3 percent of failed transactions. This is future work.

Also, we wish to perform more extended runs of the system,
manipulating the delays in the simulation. We believe widely
disparate network delays and processor speeds will lead to a much
greater percentage of failed trades.

We would also like to extend MarketSim's functionality, making it a
more realistic simulation, and introduce more complicated business
logic. This will lead to greater understanding of the causal order
errors that cause trades to fail and those that are irrelevant to the
correct functioning of the system. We are also interested in
extending this work to other business logic and collecting similar
information.

Finally, after gathering this data, we expect to be able to define a
classification system for possible ordering issues in distributed
applications, with the goal of aiding the application developer in
building distributed systems. Such a classification would show when
the developer must be aware of causal ordering issues and when
these issues can be ignored.

Acknowledgments

11

www.manaraa.com

This work is based heavily on MarketSim, a stock market simulation
written by Ryan Junee and Thomas Richards. Thanks also go to Alan
Fekete, who generated many of these ideas.

References

1. D. Cheriton and D. Skeen, "Understanding the Limitations of
Causally and Totally Ordered Communications," Proc. 14th ACM
Symp. Operating Systems Principles, ACM Press, 1993, pp.
44-57.

2. J.H. Saltzer, D.P. Reed, and D.D. Clark, "End-to-End Arguments
in System Design, ACM Trans. Computer Systems, vol. 2, no. 4,
Nov. 1994, pp. 277-288.

3. K. Birman, "A Response to Cheriton and Skeen's Criticism of
Causal and Totally Ordered Communication," Operating
Systems Rev., vol. 28, no. 1, 1994, pp. 11-21.

4. K. Birman and R. van Renesse, eds., Reliable Distributed
Computing with the Isis Toolkit, IEEE CS Press, 1994.

5. Y. Amir, Replication Using Group Communication over a
Partitioned Network, PhD thesis, Inst. of Computer Science,
Hebrew Univ. of Jerusalem, 1995.

6. D. Dolev and D. Malki, "The Transis Approach to High
Availability Cluster Communication,"Comm. ACM, vol. 39, no. 4,
Apr. 1996, pp. 64-70.

7. D.L. Tennenhouse et al., "A Survey of Active Network
Research," IEEE Comm., vol. 35, no. 1, Jan. 1997, pp. 80-86.

8. M.J. Ranum, "A Network Firewall," Proc. 1st World Conf.
System Administration and Security, 1992.

9. S. Maffeis, R. van Renesse, and K.P. Birman, "Horus: A Flexible
Group Communication System, Comm. ACM, vol. 39, no. 4,
Apr. 1996, pp. 76-83.

10. 10. L. Lamport, "Time, Clocks, and Ordering of Events in a
Distributed System," Comm. ACM, vol. 21, no. 7, July 1978, pp.
558-565.

12

www.manaraa.com

Nikki Lesley is a lecturer in the School of Information Technologies at the University
of Sydney. Her research interests include theoretical properties of distributed systems,
middleware technology, and pervasive computing. Contact her at
nikki@cs.usyd.edu.au.

Holly Hou is an honors student in the School of Information Technologies at the
University of Sydney. Her research interests include distributed systems and
middleware technology. Contact her at Holly.Hou@honeywell.com.

Joydeep Mitra is an engineering student in the School of Electrical and Information
Engineering at the University of Sydney. Contact him at jmit2685@mail.usyd.edu.au.

13

